The in situ Generation of Thiazyl Trichloride: A Synthon for C-N-S Heterocycles

Allen Apblett and Tristram Chivers*

Department of Chemistry, The University of Calgary, Calgary T2N 1N4, Alberta, Canada

The novel reagent NSCl₃ is readily generated by treatment of (NSCl)₃ with an excess of SO₂Cl₂; the reactions of NSCl₃ with methacrylonitrile or thioacetamide produce 4-cyanoisothiazole or 5-methyl-1,3,2,4-dithiazolium chloride, respectively, in good yields.

Although NSF₃ is well characterized,¹ the corresponding chloride, NSCl₃, is unknown. We describe here the generation and ¹⁴N n.m.r. spectroscopic characterization of this thermally unstable compound and its use as an *in situ* reagent for high yield, direct syntheses of 4-cyanoisothiazole (1; R = CN) and 5-methyl-1,3,2,4-dithiazolium chloride (2; R = Me, X = Cl).

I.r. studies indicate that (NSCI)₃ is in equilibrium with NSCI in solution.² The ¹⁴N n.m.r. spectrum of (NSCl)₃ in chloroform at 25 °C shows two peaks at 338 and -262 p.p.m. (ref. MeNO₂).³ The relative intensity of the former peak increases as the temperature is raised, so these signals are attributed to NSCl and (NSCl)₃, respectively. The addition of an excess of sulphuryl chloride to a solution of (NSCl)₃ in chloroform is accompanied by the evolution of SO₂. The ¹⁴N n.m.r. spectrum of this solution shows a strong signal at -4 p.p.m., which we attribute to NSCl₃, in addition to much weaker signals for NSCl and (NSCl)₃. Since (NSCl)₃ is usually prepared by the action of an excess of SO₂Cl₂ on S₄N₄ or S₃N₂Cl⁺Cl⁻, ⁴ it is not surprising that attempts to isolate NSCl₃ have given only (NSCl)₃. A solution of NSCl₃ in chloroform or sulphuryl chloride is, however, a useful reagent for the synthesis of cyclic S-N compounds as illustrated by the following two examples.

Compound (1; R = CN) was prepared by the addition of methacrylonitrile (10 mmol) to a solution of NSCl₃ (10 mmol) obtained by the treatment of a solution of (NSCl)₃ (3.33 mmol) in chloroform (25 ml) with a large excess of SO₂Cl₂ (10 ml). The reaction mixture was heated at reflux for 16 h and, after the removal of volatile materials in vacuo (1; R = CN) (7.8 mmol) was obtained in 78% yield as air-stable, white crystals by sublimation of the orange-red residue under a static vacuum of 0.1 Torr at 50°C:† m.p. 95°C; m/z (electron impact, 70 eV) $110 [C_4H_2N_2S, 100\%]$, 83 [HC(S)CCN, 80], 59 [HCSN, 50], 56 [CC(S)H, 15], 51 [?, 15], 45 [HCS, 30], 38[CCN, 20], 32 [S, 25]; ¹H n.m.r. (200 MHz, CDCl₃) 8 9.22 (s, 1H), 8.70 (s, 1H); ¹³C n.m.r. (200 MHz, CDCl₃) δ 157.7, 156.0, 112.4, 109.3; i.r. (Fluorolube mull) ν (C≡N) 2234s cm⁻¹; λ_{max} (MeCN) 246 nm, ϵ 9.3 \times 10³ l mol⁻¹ cm⁻¹. This high yield, direct preparation of (1; R = CN) from methacrylonitrile and NSCl₃ formally involves a cyclo-condensation reaction with loss of 3 mol of HCl [equation (1)] and compares favourably with the usual four-step synthesis of 4-cyanoisothiazoles from the parent ring system.5

Compound (2; R = Me, X = Cl) was prepared by the addition of thioacetamide (35.4 mmol) to a solution of

(NSCl)₃ (11.8 mmol) in SO₂Cl₂ (ca. 50 ml). The reaction mixture was heated at reflux for 16 h. After removal of the excess of SO₂Cl₂, the addition of acetonitrile (15 ml) gave (2; R = Me, X = Cl) as an orange solid (18.6 mmol). Diethyl ether (50 ml) was added to the filtrate to produce a further 3.8 mmol of (2). The total yield was 63%:† m.p. 199 °C; m/z (electron impact 70 eV) 119 (CH₃CN₂S₂, 20%), 78 (S₂N, 50), 73 (CH₃CNS, 25), 64 (S₂, 100), 48 (?, 80), 46 (NS, 25), 41 (CH₃CN, 5), 32 (S, 30); 1 H n.m.r. (200 MHz, CDCl₃), 1 O 1.22 (s); i.r. (Nujol and Fluorolube mulls) 2960m, 2929s, 2956m, 1407s, 1373vs, 1350m, 1052vs, 857vs, 816vs, 794vs, 761s, 676m, 542s, 535m, 516m, 370m cm⁻¹.

The formation of (2; R = Me, X = Cl) from thioacetamide and NSCl₃ also involves a cyclo-condensation reaction with loss of 2 mol of HCl [equation (2)].

Several derivatives of (2) (R = Me, Bu^t, CF₃, or I; $X = AsF_6$) have been obtained recently by the cycloaddition reaction of $NS_2^+AsF_6^-$ with the corresponding nitrile and the reduction of this cation produces thermally stable radicals with interesting properties.^{6–8} The advantages of the alternative route to (2) described here are (a) the relative ease of preparation and handling of $NSCl_3$ compared to $NS_2^+AsF_6^{-,9,10}$ and (b) the high solubility of (2; R = Me, X = Cl) in organic solvents, suggesting that this product contains a covalent S–Cl bond.

These two examples demonstrate the potential utility of the reagent NSCl₃ for the synthesis of C-N-S heterocycles. Further studies of the generality of these procedures and of the application of NSCl₃ in the preparation of other S-N ring systems are in progress.

We thank Professor J. Passmore and Dr. M. J. Schriver (University of New Brunswick) for details of their work on ¹⁴N n.m.r. spectra of (NSCl)₃ and S-N cations prior to publication. Financial support from the N.S.E.R.C. (Canada), the Alberta Heritage Scholarship fund, and the Killam Founda-

$$CH_3$$
+ 'NSCl₃' $\xrightarrow{-2HCl}$ (2; R = Me, X = Cl) (2)

 $[\]dagger$ Analytical data and, in the case of (1; R = CN), the high resolution mass spectrum confirmed the elemental composition of new compounds.

tion (The University of Calgary) for postgraduate awards to A. A. is gratefully acknowledged.

Received, 3rd September 1987; Com. 1291

References

- O. Glemser and R. Mews, Angew. Chem., Int. Ed. Engl., 1980, 19, 883.
- 2 H. G. Heal, 'The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen and Phosphorus,' Academic Press, London, 1980, p. 135.
- 3 M. J. Schriver and J. Passmore, personal communication.

- 4 G. G. Alange and A. J. Banister, *J. Chem. Soc.*, *Dalton Trans.*, 1972, 2399.
- 5 K. R. H. Wooldridge, Adv. Heterocycl. Chem., 1972, 14, 1, and references cited therein.
- 6 G. K. MacLean, J. Passmore, M. J. Schriver, P. S. White, D. Bethell, R. S. Pilkington, and L. H. Sutcliffe, J. Chem. Soc., Chem. Commun., 1983, 807; G. K. MacLean, J. Passmore, M. N. S. Rao, M. J. Schriver, P. S. White, D. Bethell, R. S. Pilkington, and L. H. Sutcliffe, J. Chem. Soc., Dalton Trans., 1985, 1405.
- 7 N. Burford, J. Passmore, and M. J. Schriver, J. Chem. Soc., Chem. Commun., 1986, 140.
- 8 W. V. F. Brooks, N. Burford, J. Passmore, M. J. Schriver, and L. H. Sutcliffe, J. Chem. Soc., Chem. Commun., 1987, 69.
- A. J. Banister, R. G. Hey, G. K. MacLean, and J. Passmore, Inorg. Chem., 1982, 21, 1679.
- 10 A. J. Banister and A. G. Kendrick, J. Chem. Soc., Dalton Trans., 1987, 1565.